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A mathematical model of Viterbi decoder burst error performance is presented. This
model allows for computer generation of Viterbi-like error sequences quickly and inex-
pensively for applications where large amounts of data are required. The model was
corroborated through comparisons with actual software decoder simulations.

l. Introduction

It is well known that the bit errors produced by Viterbi
decoding are not at all independent. Instead, they tend to
group together in error clumps known as “bursts.” This
happens because error events in a Viterbi decoder are caused
by excursions from the correct path in the code trellis struc-
ture (Ref. 1). Hence the implementation of convolutional
encoding with Viterbi decoding transforms a Gaussian chan-
nel (such as the deep space channel) into a fading channel
(see Fig. 1).

The DSN has adopted convolutional coding as a standard
for deep space missions. The standard code is a (7, 1/2) con-
volutional code, which is currently decoded by Viterbi de-
coders.

Until now, the preferred method for studying the Viterbi
channel has been with actual Viterbi decoding hardware or
software. Running Viterbi decoder hardware for the purposes
of such studies can be much more expensive than computer
simulation. On the other hand, the software approach is
usually so slow as to be prohibitively expensive. In this article,
a method is presented for producing Viterbi-like error se-
quences both quickly and inexpensively using Monte-Carlo
techniques.

Software Viterbi decoder simulations (of the type de-
scribed in Ref, 2) have shown that burst lengths, as well as the
times between consecutive bursts (known as “waiting times”),
are very nearly geometrically distributed. The parameters
needed to define these distributions are the average burst
length, B, the average waiting time, W, and the average density
of errors in a burst, 8. Given these parameters, Viterbi decoder
burst lengths, B, were observed to be distributed according to

prB=m)=p(l-p)*"  (m>0) 1)
where
p = 1/B.

Errors within bursts occur randomly with probability 6.
Waiting times, W, were observed to be distributed according
to :

pr(W=n) =q(l-q"*"  (@>K-1) (2)
where X is the constraint length of the code and

q = 1/(W-K+2)

This description of Viterbi decoder burst statistics is called the
“geometric model.”
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Il. Summary of Results

A Monte Carlo software routine was written to generate
Viterbi error sequences directly from Eqs. (1) and (2). The
advantage of doing this is that Viterbi decoder simulation
software requires several orders of magnitude more calculations
per decoded bit than such random number generation tech-
niques. On the computer used for this study (an XDS Sigma-5),
the software Viterbi decoder required about 25-7 hours per
million bits for a code of constraint length K, while the geo-
metric model required an average of five minutes per billion
bits.

In order to validate the geometric model of Viterbi burst
error statistics, the Viterbi channel of Fig. 1 was embedded
in a Reed-Solomon coding scheme as shown in Fig. 2. The
Reed-Solomon code used is a (255, 223) code capable of cor-
recting up to 16 8-bit symbol errors per codeword. This
concatenated coding scheme is a proposed NASA standard for
deep space missions (Ref. 3). Normally, the Reed-Solomon
symbols would be interleaved to a depth of four or five so
as to minimize the effects of Viterbi burst errors, In this
article the symbols were not interleaved, in order to maximize
the effects of the bursts. The resulting Reed-Solomon word
and bit error probabilities were calculated by tabulating the
errors generated using both a Viterbi software decoder and a
Monte-Carlo routine that generated random bursts and waiting
times according to the geometric model.

The results of these comparison runs are shown for various -

convolutional codes in Figs. 3 to 8. (Some of the curves ex-
hibited in these figures run off the edge of the page since the
next data point was too low to be plotted on the same scale.)
At high signal-to-noise ratios (SNRs), fewer error events were
observed, and hence the uncertainty in the results is higher at
these points. Error bars indicating a 90% confidence interval
are included in Fig. 5. It can be seen that the geometric model
and the actual data agree to within the uncertainty of the
experiments.

lll. The Definitions of ‘“‘Burst” and
“Waiting Time”

Denote the constraint length of the convolutional code
under consideration by K. Consider a sequence of bits output
by the Viterbi decoder of the form

K-1 B K-1

P o, O e
cee...C exxx...xe cec...c
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where the letter ¢ represents a correctly decoded bit, an e
represents a bit error, and an x may be either correct or in
error. Suppose also that there is no string of K - 1 consecutive
c’s in the sequence xxx ... x. Then the string exxx ... xe is
called a “burst” of length B. The motivation behind this
definition of a burst is that a string of K - 1 consecutive
correct bits will return the Viterbi decoder to the correct
decoding path. A string of ¢’s between two bursts will be
referred to as a “waiting time.”

IV. Derivation of the Geometric Model of
Burst Statistics

A random variable X is said to be geometrically distributed
with parameter pe [0, 1] if

pr(X=s)=p(1—p)s. =0,1,2,..).

For the purposes of this section, a random variable Y satisfies
a “modified geometric distribution” of parameter pe [0, 1] if
there exists a positive integer d such that

pr(Y=5)=p(1-py? (s=d,d+1,d+2,..).

In this case, Y will be called d-geometrically distributed.

It is shown in Ref. 4 by a random coding argument that
burst lengths for an “average convolutional code” have a dis-
tribution that may be upper-bounded by a l-geometric distri-
bution. In this report, it will be shown that for convolutional
codes of constraint lengths seven through ten, burst lengths
are, in fact, very nearly 1-geometrically distributed, Moreover,
the waiting times are (K - 1)-geometrically distributed.

The tests that were used to exhibit these facts were essen-
tially the same for burst lengths and waiting times, For this
reason, only the test for burst lengths will be described below.

Suppose that a software Viterbi decoder simulation is per-
formed and N bursts are observed. Let B; be the length of the
ith burst (( = 1,2,3, ..., N). Let B be the random variable
representing burst length (so B, is the #h sample of the random
variable B). It must be shown that

pr8,=s) = p(1-py' (s=123,..)

for some pe[0,1}. T_he fact that these probabilities must sum
to one forcesp = 1/B.




For each m = 1,2,3, .. . let N,,, be the number of bursts of
length greater than or equal to m. If the burst lengths were
indeed 1-geometrically distributed with parameter 1/B, then
the expected value of NV,,, /N,, would be

(; p(l -p)s")/(g; p(l —p)“)

men _ 1 m=«n
1 -py =" = (1 -77‘) :

EW, /N,)

In other words, for N sufficiently large,
1-1/B ~ (N [N YHom=m)

Since &V is only moderately large in the software simulations
that were performed for this study (on the order of 200 to

500), the performance of this test can be improved by group-
ing bursts of several consecutive lengths into bins. Enough
bursts were placed into each bin so that 1 - 1/B could be
approximated to within 0.05 with 90% accuracy for each bin.
These approximations remained reasonably constant between
bins, indicating a successful test.

As remarked in Section II, waiting times were found, by a
similar test, to be (K - 1)-geometrically distributed with
parameter ¢ = 1/(W - K + 2), where W is the average waiting
time and K is the constraint length of the code.

The geometric model of Viterbi burst error statistics states
that these bursts occur randomly according to these two modi-
fied geometric distributions. Errors within a burst occur essen-
tially randomly (except for the fact that each burst starts and
ends with an error) with probability 6. To generate error
sequences similar to those produced by a Viterbi decoder,
only the quantities B, W, and 6 must be known. These are
tabulated for several codes and channel SNRs in Tables 1 to 4.
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Table 1. Viterbi decoder burst statistics,

3233013 (7, 1/2) convolutional code Table 3. Viterbi decoder burst statistics,
3103320323 (10, 1/2) convolutional code

E,/Ng, dB B w )

0.5 - 25.84 131.2 0.564 By 3B 5 Y ’
0.75 23.46 158.5 0.566 0.5 37.98 162.4 0.511
1.0 21.07 220.5 0.571 06 35.99 184.8 0.512
1.1 19.78 275.8 0.574 0.7 32.72 221.7 0.517
1.2 19.27 293.2 0.574 0.8 30.11 248.5 0.515
1.3 18.02 371.2 0.573 0.9 28.07 292.9 0.518
1.4 17.46 430.6 0.573 1.0 26.98 353.0 0.523
L5 17.01 474.1 0.578 1.2 25.16 526.7 0.530
1.6 15.76 600.8 0.578 1.3 22.86 601.0 0.530
1.7 15.21 702.2 0.579 1.4 21.15 857.6 0.537
1.8 14.32 847.0 0.586 1.5 21.13 983.6 0.531
1.9 13.50 . 931.7 0.584 1.6 20.86 1217 0.545
2.0 12.89 1122 0.590 1.7 18.80 1566 0.541
2.5 10.17 3258 0.599 2.0 16.95 4048 0.551
3.0 8.67 9596 0.584 2.5 14.14 2.5E4 0.585
3.5 6.70 3.7E4 0.630 3.0 11.25 2.5E5 0.622
4.0 4.40 2.0ES 0.591

Table 2. Viterbi decoder burst statistics,

7376147 (7, 1/3) convolutional code
Table 4. Viterbi decoder burst statistics,
7461776427 (10, 1/3) convolutional code

E, /N, dB B 17 ) .
0.5 16.80 228.3 0.596 E /N, dB B 17 )
0.6 15.79 258.6 0.598
0.7 15.31 290.1 0.601 0.5 25.29 398.1 0.533
0.8 14.70 308.2 0.602 0.6 24.84 455.3 0.532
0.9 13.94 355.5 0.605 0.7 22.06 549.4 0.539
1.0 13.24 440.1 0.612 0.8 21.37 642.4 0.541
1.1 13.13 473.5 0.611 0.9 20.76 813.0 0.540
1.2 12.13 567.1 0.613 1.0 19.34 990.1 0.540
1.3 12.01 663.4 0.615 1.2 17.68 1606 0.546
1.4 11.40 787.2 0.620 1.3 16.33 2094 0.555
1.5 11.30 980.8 0.624 1.5 14.08 3245 0.566
1.6 10.79 1146 0.622 2.0 11.21 1.6E5 0.566
2.0 9.46 2556 0.636 2.5 8.20 6.8E5 0.646
2.5 7.53 8613 0.653
3.0 6.35 2.9E4 0.685
3.5 7.25 1.2E5 0.672
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Fig. 3. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (7, 1/2) convolutional

code
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Fig. 4. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (7, 1/3) convolutional
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Fig. 5. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (8, 1/2) convolutional
code
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Fig. 6. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (9, 1/2) convolutional
code
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Fig. 7. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (10, 1/2) convolutional

code
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Fig. 8. Non-interleaved performance statistics for concatenated
coding scheme assuming no system losses, (10, 1/3) convolutional

code
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